II B.Tech - I Semester – Regular/Supplementary Examinations DECEMBER 2022

FLUID MECHANICS AND HYDRAULIC MACHINES (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Determine the density, specific weight and specific volume of the oil (specific gravity =	L2	CO1	7 M			
		0.8) in a tank whose dimensions are $4 \text{ m} \times 5 \text{ m} \times 6 \text{ m}$.						
	b)	A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in figure below. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank. $P_{atm} = 96 \text{ kPa}$	L2	CO1	7 M			
	OR							
2	a)	A 0.6-mm-diameter glass tube is inserted into	L2	CO1	7 M			
		water at 20°C in a cup. Determine the capillary						
		rise of water in the tube. The surface tension of						

of water with glass is 0°. of water with glass is 0°. b) Determine the atmospheric pressure at a location where the barometric reading is 740 mm Hg and the gravitational acceleration is g = 9.81 m/s ² . Assume the temperature of mercury to be 10°C, at which its density is 13,570 kg/m ³ . L2 CO1 7 M UNIT-II		<u> </u>		1	1	
b) Determine the atmospheric pressure at a location where the barometric reading is 740 mm Hg and the gravitational acceleration is $g = 9.81 \text{ m/s}^2$. Assume the temperature of mercury to be 10°C, at which its density is 13,570 kg/m ³ . UNIT-II 3 a) Derive the contonuity equation in three L2 CO2 7 M diamentional form. b) Water at 20°C is to be pumped from a reservoir $L2$ CO2 7 M ($z_A = 5 \text{ m}$) to another reservoir at a higher elevation ($z_B = 13 \text{ m}$) through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes.			water at 20°C is 0.073 N/m. The contact angle			
where the barometric reading is 740 mm Hg and the gravitational acceleration is $g = 9.81 \text{ m/s}^2$. Assume the temperature of mercury to be 10°C, at which its density is 13,570 kg/m ³ . UNIT-II 3 a) Derive the contonuity equation in three L2 CO2 7 M diamentional form. b) Water at 20°C is to be pumped from a reservoir ($z_A = 5$ m) to another reservoir at a higher elevation ($z_B = 13$ m) through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes.						
the gravitational acceleration is $g = 9.81 \text{ m/s}^2$. Assume the temperature of mercury to be 10°C, at which its density is 13,570 kg/m ³ . UNIT-II 3 a) Derive the contonuity equation in three L2 CO2 7 M diamentional form. b) Water at 20°C is to be pumped from a reservoir ($z_A = 5$ m) to another reservoir at a higher elevation ($z_B = 13$ m) through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes. $L_{a=5m}$ $L_$		b)	1 I	L2	CO1	7 M
Assume the temperature of mercury to be 10°C, at which its density is 13,570 kg/m ³ .UNIT-II3 a) Derive the contonuity equation in three L2 CO2 7 M diamentional form.b) Water at 20°C is to be pumped from a reservoir ($z_A = 5$ m) to another reservoir at a higher elevation ($z_B = 13$ m) through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes. $I_{a} = 5m$ $I_{a} = 5m$ $I_{b} = 4cm$ $I_{a} = 5m$ $I_{a} = 5m$ $I_{b} = 4cm$ $I_{a} = 5m$ $I_{b} = 5m$ $I_{b} = 4cm$ $I_{a} = 5m$ $I_{a} = 5m$ $I_{a} = 5m$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
at which its density is 13,570 kg/m ³ .UNIT-II3a)Derive the contonuity equation in three L2 CO2 7 M diamentional form.b)Water at 20°C is to be pumped from a reservoir ($z_A = 5$ m) to another reservoir at a higher elevation ($z_B = 13$ m) through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes. $I_{1}=36$ m $I_{1}=36$ m $I_{2}=36$ m						
UNIT-II3a) Derive the contonuity equation in three L2 CO2 7 M diamentional form.L2 CO2 7 Mb) Water at 20°C is to be pumped from a reservoir $(z_A = 5 m)$ to another reservoir at a higher elevation $(z_B = 13 m)$ through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes. $L_1 = 36 m$ $L_1 = 36 m$ $L_2 = 36 m$			-			
3 a) Derive the contonuity equation in three L2 CO2 7 M diamentional form. b) Water at 20°C is to be pumped from a reservoir $L2$ CO2 7 M $(z_A = 5 \text{ m})$ to another reservoir at a higher elevation $(z_B = 13 \text{ m})$ through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes.			at which its density is $13,570 \text{ kg/m}^3$.			
diamentional form. b) Water at 20°C is to be pumped from a reservoir $(z_A = 5 \text{ m})$ to another reservoir at a higher elevation $(z_B = 13 \text{ m})$ through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes. $\int_{l_1=36 \text{ m}} \int_{l_2=36 \text{ m}}^{control} \int_{l_2=36 \text{ m}}^{l_2=36 \text{ m}}$			UNIT-II			
$(z_A = 5 \text{ m})$ to another reservoir at a higher elevation $(z_B = 13 \text{ m})$ through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes.	3	a)		L2	CO2	7 M
UK		b)	$(z_A = 5 \text{ m})$ to another reservoir at a higher elevation $(z_B = 13 \text{ m})$ through two 36-m-long pipes connected in parallel, as shown in Fig. The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water is to be pumped by a motor-pump combination that draws 8 kW of electric power during operation. The minor losses and the head loss in pipes that connect the parallel pipes to the two reservoirs are considered to be negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes.	L2	CO2	7 M
Page 2 of 4						

4	a)	What is the definition of a streamline? What do	L2	CO2	7 M	
		streamlines indicate? What is the definition of a				
		streakline? How do streaklines differ from				
		streamlines?		~ ~ ~		
	b)	A 300mm diameter pipe conveying water	L2	CO2	7 M	
		branches into two pipes of diameter 250mm and				
		200mm respectively. If the average velocities in				
		the 300mm and 200mm pipes be 2.5m/s and 1				
		m/s. Calculate the velocity in the 250mm pipe.				
	\ \	UNIT-III		<u> </u>		
5	a)	With the help of a neat sketch explain the	L3	CO3	7 M	
		working of Pitot tube. How does the Pitot tube				
		measure stagnation and static pressure?		~ ~ ~		
	b)	Obtain an expression for the force exerted by a	L3	CO3	7 M	
		jet of water on a fixed vertical plate in the				
		direction of the jet.				
	OR					
6	a)	A Venturi meter equipped with a differential	L3	CO3	7 M	
		monometer is used to measure the flow rate of				
		water at $15^{\circ}C$ (= 999.1 kg/m ³) through a				
		5cm diameter horizontal pipe. The diameter of				
		the Venturi neck is 3 cm and the deferential				
		the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the				
		the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the				
		the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average				
		the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe.				
	b)	the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe. A jet of water of diameter 50 mm moving with a	L3	CO3	7 M	
	b)	the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe.A jet of water of diameter 50 mm moving with a velocity of 20 m/s strikes a fixed plate in such a	L3	CO3	7 M	
	b)	the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe.A jet of water of diameter 50 mm moving with a velocity of 20 m/s strikes a fixed plate in such a way that the angle between the jet and the plate	L3	CO3	7 M	
	b)	 the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe. A jet of water of diameter 50 mm moving with a velocity of 20 m/s strikes a fixed plate in such a way that the angle between the jet and the plate is 60°. Find the force exerted by the jet on the 	L3	CO3	7 M	
	b)	the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe. A jet of water of diameter 50 mm moving with a velocity of 20 m/s strikes a fixed plate in such a way that the angle between the jet and the plate is 60°. Find the force exerted by the jet on the pate (i) in the direction normal to the plate	L3	CO3	7 M	
	b)	 the Venturi neck is 3 cm and the deferential monometer shows a reading of 0.5m. Taking the discharge coefficient to be 0.98, determine the volume flow rate of water and the average velocity through the pipe. A jet of water of diameter 50 mm moving with a velocity of 20 m/s strikes a fixed plate in such a way that the angle between the jet and the plate is 60°. Find the force exerted by the jet on the 	L3	CO3	7 M	

UNIT-IV							
7	a)	Classify hydraulic turbines according to the type	L2	CO4	7 M		
		of energy available at the inlet of the turbines,					
		direction of flow, head at inlet of the turbine and					
		specific speed of the turbines.					
	b)		L3	CO4	7 M		
		expression for the specific speed. What is the					
		significance of the specific speed?					
	[OR	Γ				
8	a)	What is the function of draft tube? What are the	L2	CO4	7 M		
		types of draft tubes? Define the efficiency of					
		draft tube with an expression.					
	b)	1 / 1	L3	CO4	7 M		
		'unit discharge' with reference to a hydraulic					
		turbine. Also derive expressions for these terms.					
		UNIT-V	[
9	a)	What do you understand by characteristic curves	L2	CO4	7 M		
		of a pump? What is the significance of the					
		characteristic curves?					
	b)	5	L2	CO4	7 M		
		suction and delivery pipes of a reciprocating					
		pump.					
	OR						
10	a)	Define net positive suction head and required net	L3	CO4	7 M		
		positive suction head and explain how these two					
		quantities are used to ensure that cavitation does					
		not occur in a pump.					
	b)		L2	CO4	7 M		
		a reciprocating pump.					